
Syllabus

CSC 200 Cs3: Data Structures

General Information

Date
July 12th, 2018

Author
Sandra Brown

Department
Computing Sciences

Course Prefix
CSC

Course Number
200

Course Title
Cs3: Data Structures

Course Information

Credit Hours
4

Lecture Contact Hours
4

Lab Contact Hours
1

Other Contact Hours

Catalog Description
CS3: Data Structures covers the fundamentals of data structures, introduction to analysis of algorithms, and team 
development of software applications. This course is the third in a series of three required programming courses for a 
traditional computer science degree. Data structures covered include sets, lists, stacks, queues, linked lists, binary trees, 
and heaps. Advanced topics include, binary search trees, search and sort algorithms, recursion, and algorithm efficiencies 
in software development. Students will be introduced to project management and team dynamics through the 
development of a large software solution.

Key Assessment
This course does not contain a Key Assessment for any programs

Prerequisites

August 7th, 2018 10:57 am 1/4



CSC 190

Co-requisites
None

Grading Scheme
Letter

First Year Experience/Capstone Designation

This course is designated as satisfying the outcomes applicable for status as a
Capstone Course

SUNY General Education

This course is designated as satisfying a requirement in the following SUNY Gen Ed category
None

FLCC Values

Institutional Learning Outcomes Addressed by the Course

Vitality
Inquiry
Perseverance
Interconnectedness

Course Learning Outcomes

Course Learning Outcomes

1. Identify and implement advanced data structures for the manipulation of data

2. Integrate multiple algorithms to form a complex computer solution

3. Analyze and evaluate the efficiencies of available data structures in order to select the appropriate solution for a 
given algorithm

4. Plan, prioritize, and build a complex computer solution within a collaborative work environment

Outline of Topics Covered

1. The Recursive method and the benefits of using recursion

2.

August 7th, 2018 10:57 am 2/4



Benefits of generics

3. Explore the relationship between interfaces and classes in the Java Collections Framework 

hierarchy

4. Store unordered, nonduplicate elements using a set

5. Compare the performance of sets and lists

6. Estimate algorithm efficiency using Big O notation

7. Explain growth rates and why constants and nondominating terms can be ignored in an 

estimation

8. Determine the complexity of various types of algorithms

9. Describe common growth functions

10. Study and analyze time complexity of various sorting algorithms

11. Design and implement a linked list using a linked structure

12. Design and implement a stack class using an array list and a queue class using a linked list

13. Design and implement a priority queue using a heap

14. Design and implement a binary search tree

15. Analyze the complexity of search, insertion, and deletion operations in AVL trees

16. Understand what hashing is and what hashing is used for

17. Model real-world problems using graphs

18. Describe the graph terminologies:

1. Vertices

2. Edges

3. Simple graphs

4. Weighted/unweighted graphs

5. Directed/undirected graphs

19.

August 7th, 2018 10:57 am 3/4



Multithreading overview

20. Create threads to run tasks using the Thread class

21. Explain terms:

1. TCP

2. IP

3. domain name

4. domain name server

5. stream-based communications

6. packet-based communications

22. Develop an example of a client/server application

23. Work in a team to develop a software application

24. Understand professional responsibilities and liabilities associated with software development

 

August 7th, 2018 10:57 am 4/4


